Summary of the E-SWAN School 2023 in Toulouse, France

Abstract

There are two major summaries as data access and space weather lectures.

 Full name:
 Phimmasone Thammavongsy_____

1. Data access

Participation of the ESWW 2023 and the first E-SWAN school in Toulouse during 17 – 24 November 2023. On Nov 17, 2023, the IRAP researchers had given lectures on space weathers with database access of various parameters. All the database resources can be publicly accessed as follows:

To be able to access the space weather data software, you need to install Java on your computer.

1.1 The 3D views (to download software: <u>http://3dview.cdpp.eu/</u>)

The 3D views are a science tool designed and owned by CNES. The 3D view tool produces the 3D visualization of spacecraft position and attitude, planetary ephemerides, as well as scientific data (observations, simulations and models) representation. Orbits and attitudes are handled through SPICE kernels and related files from ESA or NASA repositories.

Tutorial: http://3dview.irap.omp.eu/other/3DVIEW_Tutorial_2_0.pdf

User guide: http://3dview.irap.omp.eu/other/3DVIEW Users Guide 2 2.pdf

Figure 1: Screen snapshot of the 3DViews.

1.2 JHelioviewer (to download software: <u>https://www.jhelioviewer.org/index.html</u> or <u>http://swhv.oma.be/download/</u>)

This is a space weather JHelioviewer tool which is an output of the ESA. It is High Performance Distributed Solar Imaging and Processing System - run at the Solar Influences Data Analysis Center (SIDC, <u>https://sidc.be</u>) of the Royal Observatory of Belgium (ROB)

under the supervision of Space Environments and Effects section of ESA (ESTEC/TEC-EES, <u>https://space-env.esa.int/</u>).

The JHelioviewer solar data visualisation tool has been overhauled with a strong focus for space weather usage. The viewer is able to display solar image data, and one-dimensional and two-dimensional solar timeline data.

User manual: http://swhv.oma.be/user_manual/

Figure 2: User interface.

Fundamental description of the solar images with different types of the wavelength (https://soho.nascom.nasa.gov/data/realtime/image-description.html) is given below

Images: From left to right: EIT 171, EIT 195, EIT 284, EIT 304

EIT (Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstrom the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171 Angstrom, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin, 284 Angstrom to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere.

Figure 3: EIT images.

LASCO IMAGES

Images: LASCO C2 (left). LASCO C3 (right).

LASCO (Large Angle Spectrometric Coronagraph) is able to take images of the solar corona by blocking the light coming directly from the Sun with an occulter disk, creating an artificial eclipse within the instrument itself. The position of the solar disk is indicated in the images by the white circle. The most prominent feature of the corona are usually the coronal streamers, those nearly radial bands that can be seen both in C2 and C3. Occasionally, a coronal mass ejection can be seen being expelled away from the Sun and crossing the fields of view of both coronagraphs. The shadow crossing from the lower left corner to the center of the image is the support for the occulter disk.

C2 images show the inner solar corona up to 8.4 million kilometers (5.25 million miles) away from the Sun.

C3 images have a larger field of view: They encompass 32 diameters of the Sun. To put this in perspective, the diameter of the images is 45 million kilometers (about 30 million miles) at the distance of the Sun, or half of the diameter of the orbit of Mercury. Many bright stars can be seen behind the Sun.

MDI IMAGES

Images: MDI Continuum (left). MDI Magnetogram (right).

The <u>MDI</u> (Michelson Doppler Imager) images shown here are taken in the continuum near the Ni I 6768 Angstrom line. The most prominent features are the sunspots. This is very much how the Sun looks like in the visible range of the spectrum (for example, looking at it using special 'eclipse' glasses: **Remember, do not ever look directly at the Sun!**). The magnetogram image shows the magnetic field in the solar photosphere, with black and white indicating opposite polarities.

Figure 5: MDI images.

1.3 Transplanet (to download data: http://transplanet.irap.omp.eu/create.html)

The model is basically a one dimensional model, which has been built in a modular way, leading to a core model that is independent from the planet. This core model corresponds to the part delimited by the red line in below figure. In order to be able to run, it requires some inputs, which are related to the characteristics of the planet.

The planet is determined by its orbitography and a potential magnetic field that may constrain the geometry; this dependecy is represented by the two green boxes in below figure. Without magnetic field, the grid used in the model is a vertical grid. But if a magnetic field is present, the grid used for the model is a field aligned grid, which can be an interhemispheric grid.

1.4 AMDA (to download and plot data: https://amda.irap.omp.eu/)

The Amda is a space tool for space physics, multi dataset visualization, automated event search, data mining, catalogue generation and exploitation, data model, and image centres.

Figure 7: Amda virtual desktop.

1.5 The propagation tool (to download and access data: http://propagationtool.cdpp.eu/)

This propagation tool is runnable with the required installation on your computer. The propagation tool allows users:

- To propagate solar eruptions (CMEs) radially sunward or anti-sunward (Radial Propagation)

-To propagate corotating structures (CIRs) in the heliosphere (Corotation)

- To propagate solar energetic particles along magnetic fields lines sunward or antisunward (SEP Propagation)

In addition, you can use these maps to:

- cross check your ballistic calculation of CME/CIR propagations,
- carry out your own calculations of CME/CIR trajectories in the ecliptic plane via a few clicks on the map (simple use),
- use pre-calculated CME trajectories to check if a transient emerged from the Sun and impacted a planet or probe

Figure 8: GUI interface of the propagation tool.

1.5 The magnetic connectivity tool (to download data: <u>http://connect-tool.irap.omp.eu/</u>)

This tool allows us to access the magnetic data and its forecasting data.

Tutorial: http://connect-tool.irap.omp.eu/tutorial

Magnetic Connectivity Tool													
- 1d - 6h	CORONAL MAGNETIC FIELD :	PFSS WSO NSO ADAP	MFM	PFSS/SCS	DATE	12/09/2023	+ 1d + 6h						
	PROPAGATION MODE :	SC ↓ SUN ◎	sun ↓ sc ○	SW LAG EM LAG	TIME (UTC)	<pre>® 00:00 ○ 06:00 ○ 12:00 ○ 18:00</pre>							

Figure 9: Web interface of the Magnetic Connectivity Tool.

1.6 Sola wind prediction (to download and check data: http://heliocast.irap.omp.eu/)

Figure 9: Web interface.

1.7 CACTUS (to download and monitor data: <u>https://www.sidc.be/CACTUS/</u>)

This CACTUS autonomously detects coronal mass ejections (CMEs) in image sequences from LASCO.

# CME t0	dt0	pa	da	v	dv	minv	maxv	halo?					22:24	12/08
0038 2023/12/08 16:24	02	301	140	0496	0117	0315	0868	II		i i			18:12	12/08
0037 2023/12/08 10:12	01	238	018	0204	0045	0137	0258				- i		15:36	12/08
0036 2023/12/08 09:24	02	233	008	0217	0004	0209	0220			.77 İ	i		12:00	12/08
0035 2023/12/08 07:24	00	316	010	0422	0052	0322	0459			5 6 i <u>-</u> 35	i		08:48	12/08
0034 2023/12/08 03:24	03	342	054	0322	0208	0103	0928			75	_		04:49	12/08
0033 2023/12/08 01:36	02	219	048	0504	0385	0221	1303					+70	00:36	12/08
0032 2023/12/07 23:24	01	104	006	0712	0456	0258	1488			417	8 I	8 32	21:24	12/07
0031 2023/12/07 20:24	05	235	128	0416	0086	0186	0589	II		f15 1	94 		18:00	12/07
0030 2023/12/07 13:48	01	214	010	0635	0595	0152	1843			sc30.00	_f12	<mark>≃</mark> f13	14:48	12/07
0029 2023/12/07 13:36	04	300	122	0330	0151	0178	0651	II		620			11:36	12/07
0028 2023/12/07 08:36	02	104	014	0379	0281	0209	1075			a c25 \$c27 ^{™1}	£10	c28	08:36	12/07
0027 2023/12/07 07:36	02	272	010	0293	0035	0260	0367			¢26 c24			05:24	12/07
0026 2023/12/07 07:00	01	190	006	0284	0066	0264	0416				<u> </u>		02:24	12/07
0025 2023/12/07 06:24	01	229	016	0211	0100	0156	0452			i -10 C21			22:36	12/06
0024 2023/12/07 06:12	02 j	249	084	0336	0037	0269	0446			i i	c18 i		19:24	12/06
0023 2023/12/07 03:48	01	117	012	0363	0123	0209	0520		<u>e16</u>	1	- 17		16:36	12/06
0022 2023/12/07 03:36	04	068	054	0246	0026	0201	0318			! !			14:00	12/06
0021 2023/12/07 00:00	01 j	343	020	0269	0051	0181	0332						11:00	12/06
0020 2023/12/07 00:00	03 j	348	078	0303	0067	0183	0446						00:80	12/06
0019 2023/12/06 23:12	02	305	036	0233	0170	0113	0679				-		05:24	12/06
0018 2023/12/06 19:24	03	063	056	0273	0047	0192	0355			17 17 17 17 17 17			02:12	12/06
0017 2023/12/06 17:36	03 j	063	040	0132	0019	0101 j	0175						22:24	12/05
0016 2023/12/06 15:48	01 j	158	022	0418	0141	0169	0626			fé			19:12	12/05
0015 2023/12/06 08:00	02 j	339	032	0206	0026	0172	0262		-	i	f 5		16:42	12/05
0014 2023/12/06 02:48	02 İ	228	014	0255	0092	0153	0443				p 🚬 i		13:48	12/05
0013 2023/12/05 23:24	02 j	002	062	0504	0072	0339	0606			A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10:24	12/05
0012 2023/12/05 19:36	02 j	296	054	0367	0145	0262	0726			c6 f2	108		07:10	12/05
0011 2023/12/05 17:00	01 j	168	018	0664	0073	0573	0781			_ ···			04.24	12/03
0010 2023/12/05 11:36	00 j	352	018	1736	0228	1302	1838			2 c4			22,12	12/03
0009 2023/12/05 10:00	01 j	284	010	0237	0041	0153	0281						19.12	12/04
0008 2023/12/05 10:00	07 İ	067	056	0114	0028	0097	0205					*c 3	16,12	12/04
0007 2023/12/05 07:36	01 j	236	030	0322	0764	0100	1838						12-12	12/04
0006 2023/12/05 07:36	05 İ	247	120	0380	0059	0239 İ	0520 İ	II					09.24	12/04
													03.24	12/04

Figure 10: The detective information of the CMEs near real-time on website.

Figure 11: Velocity distribution.

(E. Erdogan et al., 2021), VTEC was represented by the B-spline expansions embedded into a Kalman filter. B-splines. B-splines were used to form a highly sparse structure in the filter measurement model due to the local feature. The result of generated VTEC maps outperforms those provided by the other IGS analysis centers.

2. E-SWAN 2023 school

All the lectures are shared in this link as<u>https://events.spacepole.be/event/184/</u>. The E-SWAN 2023 school give basics of space weather, space weather data, models, indices, alerts, forecasts and products.

The useful links are given as follows

- Space weather news, info and courses: <u>https://www.stce.be/</u>
- predictions (ursigram), alerts and automated detections, data and news: <u>https://www.sidc.be/</u>
- K_Belgium, MUF, ionosonde data: <u>http://ionosphere.meteo.be/index.php</u>
- SRB alert, VTEC data: <u>https://gnss.be/</u>
- Forecasting bulletin and alerts: current Bulletins and forecasts (<u>https://events.spacepole.be/event/184/</u>), and SIDC alert (<u>https://www.sidc.be/index.php/services/real-time-alerts</u>)
- Data sources: SDO AIA and HMI data browser (<u>https://sdo.gsfc.nasa.gov/data/aiahmi/</u>), SOHO/LASCO movie maker (<u>SOHO</u> <u>Movie Theater (nasa.gov)</u>), and STEREO Science Center (<u>https://stereo-ssc.nascom.nasa.gov/cgi-bin/images</u>)